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Abstract

An empirical method for calculating level densities of closed and near-closed shell
nuclei has been developed and tested. This method is based on the calculation of shell
plus pairing corrections for each relevant nuclide. A new version of the ALICE code is
used to extract these corrections from the Myers-Swiatecki mass formula and to apply
them to the calculation of effective excitations in level densities. The corrections are
applied in a backshifted fashion to assure correct threshold dependence. We compare our
calculated results with experimental data for the production of 56Ni and 38Y to test shell
corrections near the f7/2 closure and the N=50 neutron shell. We also compare our
results with those using pure Fermi gas (plus pairing) level densities, and with the more
computationally intensive model of Kataria and Ramamurthy.

1 Introduction

Calculating and modeling nuclear level densities continues to be an important part of
modeling nuclear reactions. It has been known for some time that modifications or cor-
rections to level densities due to microscopic effects of pairing and shell structure pro-
vide much better agreement between calculations and measured data. Most often this
correction is applied as a shift in the excitation energy. The Fermi gas level density
model [1] is most often used and works well over a large mass region. However, near
shell closure, the Fermi gas model does not agree well with experimental cross sections.
A method for applying shell corrections to level densities has been developed and is
shown to work well over an extended mass region.

2 Methods

The ALICE nuclear reaction code [2] is being used to test this new shell correction
approach. The code uses the Weisskopf-Ewing evaporation model [3]; precompound
reactions are calculated using the HMS version [4] of ALICE with improvements that
allow for unlimited multiple precompound emission. ALICE also has options to include
fission and photon decay channels. A version has been modified to calculate shell-cor-
rected level densities based on the Myers-Swiatecki mass formula [S]. This formula is
based on the liquid drop model of the nucleus with algorithms for calculating the shell
correction. The pairing correction term used in ALICE is O for even-even nuclei, 11AA
for odd-even nuclei, and 22/VA for odd-odd nuclei, where A is the mass number. The
pairing and shell correction terms are combined forming a total microscopic correction
which is then added in a “backshifted” fashion to the excitation energy. To ensure cor-
rect threshold dependence, the excitation energy of the nucleus having the largest micro-
scopic correction is not shifted. The final corrections to the excitation energies of all
other nuclei are shifted (increased) by the difference in microscopic correction energies.




3 Results

Experimental and calculated excitation functions for the 39Co(p,4n)36Ni reaction are
compared in Fig.1. The solid curve is the calculation with the new shell corrected level
density, and the small-dashed curve is the result using the Kataria and Ramamurthy shell
correction. The large-dashed curve is the result of using the Fermi gas level density with
no shell correction. Note that the Fermi gas curve has been multiplied by 0.1. The exper-
imental data are from Michel et al. [6] and Haasbroek [7]. Fig. 1 demonstrates the strong
effect of shell structure at the f7/2 closure. Both of the shell-corrected curves agree rea-
sonably well with the experimental data, whereas the Fermi gas model vastly over-pre-
dicts the cross section.

The 89Y(p,pn)38Y reaction is used to test the present level density model in a different
mass region. Experimental and calculated excitation functions for this reaction are com-
pared in Fig. 2. As in Fig. 1, the solid curve shows the result using the new shell-cor-
rected level density. The small-dashed represents the Kataria and Ramamurthy shell
correction, and the large-dashed curve the Fermi gas level density with no shell correc-
tion. The experimental data are from Michel et al. [8] and Mustafa et al. [9]. While the
new shell-corrected curve agrees reasonably well with experimental data, both the
Kataria-Ramamurthy and the Fermi gas curves over-predict the data by about 40% near
the peak.

4 Conclusions

An empirical shell-corrected level density model, based on the liquid drop model, has
,been developed and tested. The model agrees well with experimental excitation func-
tions near the £7/2 shell closure and around the N=50 neutron shell. The fermi gas model
(with pairing correction included) does not agree with experimental data, predicting
cross sections more than an order of magnitude higher in some reactions. A second shell
correction model based on the work of Kataria and Ramamurthy provides agreement
with data similar to that of the present model near the £7/2 closure, but predicts higher
cross sections than both the data and the present model near the N=50 neutron closure.
This new method is simple and physically intuitive, having been derived from the well-
“known ll(]llld drop model of the nucleus.

Work performed under the auspices of the U.:S. Department of Energy by the Lawrence Livermore
National Laboratory under contract number W-7405-ENG-48.
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Fig. 1 Excitation function for 59Co(p,4n)>¢Ni.
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Fig. 2 Excitation function for 89Y (p,pn)®8Y.




